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I. INTRODUCTION

The study of instabilities in type II superconductors followed two
parallel paths, and is reported here in two self contained sections. In the
first part, the question of supercurrent capacity has been attacked experi-
mentally. A strong correlation between current capacity and a metastable w
phase has been found. This work is a fairly direct extension of earlier work
with Ti-22 a/o Nb for NASA in which various time-temperature heat treatment
conditions have been used to alter the critical temperature, field, and current
of the alloy.

The second section of this final report is a theoretical investigation of
instabilities. It is shown that the same thermodynamic non-equilibrium
situation, which gives rise to superconducting transport currents in the mixed
state, and which is generally referred to as flux pinning, results in instabil-
ities of the magnetic flux structure. A distinction has to be made between
limited instabilities which are self stopping, localized events and runaway
instabilities, which have a catastrophic character, disrupting the supercon-
ducting transport qualities of the specimen and which are also called flux
Junps. Formulas are given to calculate the conditions for flux jumping for
the simplest geometry; the influence of heat diffusion is crucial and makes
accurate calculations very difficult. By contrast the criterion for stability
is comparatively simple, containing only the specific heat and the temperature
dependence of flux pinning. The study clearly shows how to prevent instabil-
ities altogether by choosing materials which, over a limited temperature range,
increase the flux pinning strength with increasing temperature.

AI-67-83



II. METALLURGICAL STUDIES OF Ti-22 a/o Nb

by
D. Kramer

A. TRANSFORMATIONS IN TITANIUM-22 a/o NIOBIUM

The Ti-Nb alloy system consists of a continuous series of body-centered-
cubic solid solutions at elevated temperatures known as the 8 phase. At lower
temperatures and Nb contents, other phases are found. One of these is the
equilibrium hexagonal-close-packed a phase seen in the phase diagram (Figure 1).
Of more importance to the superconducting behavior in the Ti-Nb system is the
metastable w phase.

In Ti-22 a/o Nb, rapid cooling from the B phase results in its retention;
if the oxygen content is low no martensite will be found. However, careful
examination by transmission electron microscopy using the techniques of electron
diffraction and dark field illumination reveals the presence of the w phase.
The appearance of w in a sample rapidly cooled from 800°C is shown in Figure 2.

The w forms coherently and homogeneously throughout the 8 phase with linear
dimensions and spacings on the order of 50 Z. The density of the w is con-
servatively estimated to be at least 1007 3. 1ts crystal structure is
hexagonal and at this stage the composition of the w must be the same as the
parent B phase since there was no opportunity for diffusion to occur. Stiegler
et al.(z) have summarized much of what is known about the w phase in Ti and Zr
binary alloys.

Subsequent annealing of the retained g matrix with w precipitates therein may
produce three changes. The density of w precipitates may decrease, their
composition may become depleted in Nb (concomittantly the B phase becomes
richer in Nb) and the equilibrium a phase may form. An anneal of 1 hour in
the range 350 to L50°C produces little or no change in the density of the w
precipitates. Figures 3, 4, and 5 illustrate this point. However, displacements
of the Jc-H curves, seen in the following section, indicgte that the B phase has
become richer in Nb.

AI-67-83



An interesting feature - not related to superconducting behavior - is the
presence of disiocation loops in the samples annealed 1 hour at LOO and 450°C
which may be seen in Figures 6 and 7. Such loops usually form in a metal
rapidly quenched from high temperature so as to produce a supersaturation of
lattice vacancies. These vacancies subsequently agglomerate and collapse leav-
(3) In the present case, we might speculate that
the excess vacancies were produced as a result of the 8 - w transformation.

Amnealing then provided them with the necessary mobility to agglomerate and form
dislocation loops.

ing a dislocation loop behind.

, Annealing for 1 hour at 500°C produces some equilibrium o phase rendering
the superconducting properties uninteresting.

Longer anneals at 350°C had little effect on size of the w precipitates but
at 4LOO and L50°C they have grown significantly. Figure 8 shows the w phase in
the B matrix after 72 hours at 350°C. After an anneal of 48 hours at 400°C or
2}, hours at 450°C, the w particles may be individually resolved (Figures 9 and
10). They are in the shape of an ellipsoid of revolution and their dimensions
and density are given in Table 1. The major axis of the ellipsoid (hence the
direction of fastest growth) is parallel to the <111> B directions.

B. CRITICAL TRANSPORT CURRENTS

At L.2°K, critical transport currents for Ti-22 a/o Nb were measured in a
transverse magnetic field with luv sensitivity to discriminate between zero
resistance and normmal behavior. Samples in the form of wires .010 to .020 in.
in diameter were annealed for 3 hours at 800°C, rapidly cooled and annealed to
develop the w phase. The results are plotted as Jc—H curves and are seen in

Figures 11 and 12. Samples annealed only at 800°C carried currents of the order
of 10° A/cm2 and are not shown.

The highest J_ at 30 kilogauss, 1 x 10° A/cm?, was carried by a sample
annealed 1 hour at 450°C (see Figure 5). Longer time anneals at 400 and 450°C
yield considerably lower current densities. The curves in Figure 11 all have a
maximum between 20 and 30 kilogauss which is absent in the curves of Figure 12,
These, however, have an inflection point between 10 and 15 kilogauss.

AI-67-83
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TABLE 1

SIZE AND DENSITY OF ELLIPSOIDAL w PRECIPITATES
AFTER SEVERAL THERMAL TREATMENTS IN Ti-22 a/o Nb SAMPLES

——— e

o Field
Treatment cts (3) | mnss (B o3| N | Flumota Spacing
(kilogauss)
Cooled from 800°C | on the order of 50 | > 1017 | < 2 x 107° 30
L8 hours at 400°C | 520 95 10| 5 x 10 10
21, hours at 450°C | 1100 500 10| 1x107° 5
AI-67-83




The shapes of the curves may be qualitatively understood in terms of flux
pinning. The ability of a type II superconductor to sustain a zero-resistance
transport current in an external magnetic field is due to the presence of micro-
structural features which impede the motion of penetrating magnetic flux and
are referred to as pinning sites. The pinning strength is the reaction of the
bulk superconductor to the Lorentz forces which the magnetic flux is subjected
to in the presence of transport currents.

The critical transport current is reached when the Lorentz force becomes
greater than the pinning strength. This allows the flux to move through the
superconductor resulting in a small voltage drop. At low fields (< 5 kilogauss),
much of the current is at the surface of the specimen and does not reflect bulk
properties,

Magnetic flux inside the superconductor is quantized in individual flux
lines which contain a quantum

¢o = 2,07 x 1077 gauss-cm.—2

The spacing of these flux lines is given by iy

Nk '
Maximum pinning strength occurs when there i1s one flux line to each pinning
site. These sites provide local energy minima for fluxoids (quantized flux
lines) and are effective traps for only one fluxoid. More than one per site
reduces the pinning strength as does the opposite case which leaves pinning
sites empty. The details of flux pinning are complicated by mutual interaction

of fluxoids, their local distortion and the field and temperature dependence of
pinning strength.(h)

C. CORRELATION OF MICROSTRUCTURE WITH Jc~H CURVES

In Ti-22 a/o Nb, the pinning sites are the w phase precipitates. Although
the density of pinning sites is the same for all the curves in Figure 11, they
are displaced vertically because the composition of the w and B phases changes
during annealing after the 800°C treatment. The w phase becomes richer in Ti

AT-67-83
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and the B phase in Nb. This raises the upper critical field of the B phase(S)
and the pinning strength due to the greater composition difference between the
phases., After longer anneals (Figure 12), the pinning strength declines due to
a reduction in w precipitate density even though each individual precipitate
may trap fluxoids more effectively.

The maxima in the Jc—H curves of Figure 11 are associated with maximum
pinning. The last column in Table 1 is the calculated value of the field H
from Equations 1 and 2 to give a fluxoid spacing equal to the precipitate
spacing. At these fields, B and H are nearly identical. For the samples of
Figure 11, the maximum in the Jc-H curve does occur near the 30 kilogauss
calculated.

For the curves of Figure 12 from samples with coarser precipitate structures,
maxima are probably masked out by other effects. However, inflections in the
curves do occur near the field calculated in Table 1. A similar analysis has
been given by Sutton and Baker(é) for the case of Ti-32 w/o Nb.

Although a sample annealed 48 hours at 400°C has a higher density of
pinning sites than one annealed 24 hours at 450°C, the latter has a higher Jc.

This is probably owing to a greater Nb content in the matrix and more effective
pinning per site.
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Figure 1. The Ti-Nb Phase Diagram
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Figure 2. Transmission Zlectron Photomicrograph of Ti-22 a/o Nb
Rapidly Cooled from 800°C (B Phase)
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: 5024—25QfA

Figure 3. Transmission Electron Photomicrograph of Ti-22 a/o Nb
Rapidly Cooled from 800°C and Annealed 1 Hour at 350°C
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5024-2505

Figure 4. Transmission Electron Photomicrograph of Ti-22 a/o Nb
Rapidly Cooled from 800°C and Annealed 1 Hour at 400°C
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Figure 5: Transmission Electron Photomicrograph of Ti-22 afo Nb <
Rapidly Cooled from 800°C and Annealed 1 Hour at 450°C
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Figure 8.
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Figure 9. Transmission Electron Photomicrograph of Ti-22 a/o Nb
Rapidly Cooled from 800°C and Annealed A48 Hours at 400°C
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Figure 10, Transmission Electron Photomicrograph of Ti-22 a/o Nb
Rapidly Cooled from 800°C and Annealed 24 Hours at 450°C
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ITI. STABILITY STUDIES FOR TYPE II SUPERCONDUCTORS

by
S L] L * ‘Nipf

A. STABILITY REVIEW
(7-9) (10)

variously observed in all technically important high field superconductors.

Flux Jumps and critical current degradation in coils have been
Both are manifestations of the very general phenomenon of magnetic instabilities

in type II superconductors.

Inconsistency and scattering of experimental results at first gave support
to the idea that gross material imperfections and weak spots are responsible
for these effects. But this interpretation has been ruled out except for a few

isolated cases as more experimental evidence has been accumulated.

There has been no lack of qualitative discussions(7’ll_lh) but attempts at
quantitative explanations have been hampered by the complexity of the problem
and the scarcity of data for important parameters such as specific heat, thermal
conductivity or diffusivity, resistance in the critical state, etc.

The present investigation outlines a quantitative treatment of magnetic
instabilities for the very simple experimental situation of a sufficiently thick,
long,.solid cylinder (without transport current) in a parallel external field
which is changing at a constant rate. In this case, the assumption of a plane
semi-infinite superconductor in a parallel field allows a somewhat simpler
calculation while being a good approximation. The aim is to find the value of
the external field for which a flux jump takes place.

It may help to summarize briefly the experimental facts in order to
illustrate what is understood by a flux jump. If the external field, H, is
raised from zero, the field, B, inside the solid cylinder will stay zero except
in a layer adjacent to the surface in which shielding currents (parallel to
surface and at right angle to the field direction) are induced.(ls—le) This
"shielding layer" will grow in thickness as H increases until, above a certain
value of H, the shielding currents suddenly break down and B throughout the

AI-67-83
25



cylinder becomes practically equal to H. On further increase of H, the process
will repeat itself; a shielding layer growing to a certain thickness before
breaking down again and so on. The break-down process is generally called flux
Jump.

B. BASIC APPROACH

Preceding the detailed mathematical procedure, an outline of the physical

ideas is helpful. We visualize the mixed state in terms of quantized flux
lines or fluxoids inside the superconductor whose density, n, gives the induction
B=n 9y s (flux quantum Py = 2,07 x lO-7 gauss cmz). The current density, J,
in the shielding region is connected through the Maxwell equation, curl B = 47,
with the gradient of the induction

1 9B _

hﬂ ax -j o'o(l)
(The x axis is normal to the surface with the positive direction into the super-
conductor; see Figure 13.)

In the presence of this current density, a Lorentz force, FL, is acting on
the flux structure

F = ij F == oB 000(2)

The reaction to this force is provided by inhomogeneities in the mat?ri§1
19

creating local variations of the mean free energy of the flux structure. If
a force equal to the local energy gradient is applied, a fluxoid will leave its
minimum energy site and move into the neighboring minimum after the energy
maximum in between has been passed. The energy between maximum and minimum is
completely dissipated. This concept is called flux pinning and the imperfec-
tions responsible for it are vaguely referred to as pinning sites. These can
be thought of as extended defects creating a network of energy maxima or as
point defects of energy minima. Suggested examples are dislocations(zo) and
grain boundaries for the former, cavities(Zl) and impurities, for the latter.
But for the present argument, the details of flux pinning are of no concern.
One may simply assume a uniform distribution of volume density p of pinning

sites, each of strength P, resulting in a total pinning force per unit volume

AI-67-83
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of ¥, = pP. FP is a function of B and temperature T.(h)

P
A second contribution to the Lorentz force reaction, independent of flux

(22)

viscosity Tl. If the actual speed of the flux lines is v, this contribution

pinning, comes from the flux flow resistance which is characterized by a

becomes TMv. Dissipative mechanisms in flux flow have been discussed exten-

sively.(23—26)

It is found* that for low temperatures and fields, experimental results can
be expressed as T = cﬂB where c,n = Hc2/°n with Hc2 the upper critical field at

zero temperature and Pn the normal state resistivity. ¢, is constant over a

il
large range of temperature and field.

Therefore, in the shielding layer in equilibrium, the Lorentz force is
balanced by pinning and viscous forces.

F, = Fp+Tv .o (3)

The task will be to discuss the stability of this equation against disturbances.

Let us first introduce and justify two approximations. When v is very small
(at the onset of an instability), one may neglect the viscous term. This is
equivalent to assuming isothermal conditions throughout the specimen, for then
J becomes a function of B only and in order to match B and H at the surface the
fluxoids have to have a drift velocity

v, = S /9B

dr dt (x=0) = % / kv 3 (B =H) eeo (L)

The power dissipation becomes

dé = 3 . . = d—Ho B
3T Joomte,t Yy at Lo .. (5)

3¢
which enables one to estimate the limits of the isothermal approximation.'*

#* In Rsference 22 Equation (15), there is (per unit flux line): Mo -qucz(o)/
Py s in order to express a volume force here T = n nemp

¥t Tf we consider typical order of magnitude values: j > 104 A/cm s H< 10h G,
dH/dt < 104 G/sec, we have v < 1 Sm/sec, power dissipation < 1 W/cm> resulting
in a power transfer of < 0.5 w/cm across -the surface into the helium since
the shielding layer will be < 1 fm hick. This power transfer is below the

film boiling limit (~ 0.8 W/cm?)(22) which would thermally isolate the
surface from the bath.

AI-67-83
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A disturbance of this equilibrium takes the character of an addition of a
flux increment, A%, to the interior of the body. This may be thought of as
occurring when the innermost flux line moves a amall distance, see Figure 13,
Such a disturbance can be imagined as a density wave in the fluxoid structure
which propagates orders of magnitﬁde* faster than the drift velocity. This
Justifies the assumption of a constant H during the time of a disturbance.

So, using these two approximations, v = o simplifies the equilibrium
Equation (3) to

L=FP | .50(6)

and H = constant causes the flux front to take on the shape indicated in
Figure 13 after a disturbance.

The disturbance changes both Lorentz and pinning force. From Figure 13 one
sees immediately that on the whole the Lorentz force has been reduced since for
a point with the same B the gradient has become smaller. The pinning force has
also changed because of the change in temperature due to the energy dissipated
by adding 4%. The dissipation can be represented by the product of the induced
voltage and the shielding current density or, with the same result, by the
movement of flux lines against the pinning forces. The change of the pinning
force is also negative when, as in most superconductors, increasing temperature
reduces pinning strength. If the reduction of the Lorentz force is larger than
the reduction of the pinning force, the equilibrium is stable; if smaller then
it is unstable; equality gives the stability limit.

A qualitative conclusion may illustrate the point. In Figure lha are shown
two shielding layers with equal A% disturbances, A% being represented by the
shaded area. When H is small, the reduction of the Lorentz force is greater
than when H is large. The reduction in pinning strength is similar in both
cases since it depends mainly on A%, This means that the stability limit is
approached with increasing H. Looking now at a limited superconductor such as
a plane slab or a cylinder in Figure l4b, it is found that after the field has
penetrated to the center, a disturbance with the same reduction in Lorentz

(28)

*
A measurement of the magnetic diffusivity in NbZr gave a factor of 103.
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Figure 14, Influence of the External Field on the Disturbance.
Dependence on Sample Gecmetry for a Solid and a Hollow Cylinder.
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force needs an amount of A% slightly smaller than before by the cross hatched
area since flux comes in from both sides. This lends plausibility to the
frequent observation that if the center of a specimen is reached by the field
without a flux Jump taking place, the danger of flux jumping is reduced. If on
the other hand the specimen is a hollow cylinder as in Figure li4c, then the flux
Jumping danger is increased suddenly, as soon as the field reaches the inside
wall, because an increase in A%® is now needed to fill the hole.

On exceeding the stability 1limit, the Lorentz force becomes greater than
the pinning force during a disturbance and the movement of the flux lines will
accelerate. Now one has to look at Equation (3) since v can be neglected no
longer. With the acceleration of the flux lines, the disturbance grows larger
and may develop into a flux jump. The acceleration process will take some time
during which thermal conduction reduces the temperature rise and therefore, to
a certain extent, restores the pinning strength of the material. This will
reduce the acceleration and eventually decelerate the flux lines again. The
result will be a large, but locally and in time limited, disturbance as distinct
from a flux jump, described in the introduction. This situation may be termed
as one of limited instability.

Limited instability is characterized by an acceleration to a maximum speed
of the flux lines followed by deceleration. The duration of this process is
short enough that the shielding layer has not grown noticeably compared to the
original thickness X If, however, f vdt becomes comparable to X, during the
acceleration process, then the heat conduction, both to the surface of the
specimen and across the inner boundary of the shielding layer, which should
reduce the temperature and thus restore the pinning, becomes less effective.
Eventually the shielding layer may grow so rapidly that the heat conduction
becomes negligible, i.e., the front of the advancing flux may outrun the heat
conduction, resulting in an adiabatic process. This runaway instability then
is a flux jump.

A graphic representation summarizing the basic approach is given in
Figure 15.

The following three sections will give a quantitative treatment along the
given outline for the regions of full stability, limited instability, and runaway
instability.
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Figure 15. Graphic Representation of Basic Approach. Equilibrium is
represented by point E where FL = Fp. It is shown how Fp might be
affected by an increasing disturbance A%. If the Lorentz force changes
as indicated by Fp, 1 then the equilibrium is stable. The limit of the
stability region is found when Fj and Fp have the same tangent at E. A
limited instability is illustrated by Fy, 2; this causes Fp to change as
curve 2 lying on the surface which indicates how Fp recovers with time
due to heat conduction. The projection 2' gives the point of maximum
speed where it crosses Fj 2, it is the inflection point on the projection
2" into the t, A# plane. Fp 3 indicates a runaway instablility. The run-

away speed is reached when 3' becomes parallel to FL 3. A linear approxi-

mation of FL is assumed.
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C. FULL STABILITY

A disturbance of the shielding layer can be introduced by changing B(x) into
B(x) + 8(x) where B(x) is an infinitesimally small positive field. This will

change Lorentz and pinning force from FL into FL + AFL and FP into FP + AFP.

The equilibrium Equation (6) changes into

instability

>
p YA, S FptaFp cee(7)

stability

The equal sign, belonging either to instability or to stability, separates the
two regions and determines what we call the stability limit. We want to solve

oF, = AF, v e(8)

Since, as said before, a disturbance spreads out very cuickly, we can ask that
(8) be fulfilled simultaneously for all x5

One gets using Equation (2)
- = _ 1 (pd8 8B
AF, = F; (B +8) - F, (B) -mBEre) eee(9)

BdB/dx, being small to the second order, can be neglected.

The pinning strength is mainly affected by the temperature rise which
accampanies the energy dissipation due to the admission of flux, and to a much
smaller extent by the increase in field. Thus AF, = (BFP/BT) AT + (AFP/BB) B.

The energy dissipated is

[e]
1
- E‘E 3 I 3dx 000(10)

* . -
It can be shown that if AFL > AFP for X <x< X and < for x < X X > X,

then the flux lines in % < x < X, will accelerate in such a way as to reduce

the differences between AFL and AFP in both intervals.
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The initial temperature rise becomes

AT = % Aq oa.(ll)
where ¢ is the specific heat per unit volume. Here we have again made use of
the fact that the disturbance is a quick process compared to dH/dt and avoid
using the exact (but cumbersome) heat equation

2y

Q

AT _

3  %n

o+

dg
+z 4 .. (12)

&Y

)

with %y being the thermal diffusivity, for which (11) is a solution for small

enough t. (See Sections D and E.)

With (10) and (11) we have now

dF o 3F
- __P, 1 , 0B _P,
Fp = =357 * Ime 3 I Bdx + =5 .-+ (13)
X
Equating (9) and (13) one gets
oF 3F %o
.48 . (3B _PN_. _138 _P =
B dx+(ax+“" aB> B-3C3x 3T J Bdx = 0 oo (14)

Now we have to find the field H for which (14) has a solution with the following
boundary conditions

1. p(0) =0 and 2. B (xo) =D (= const.) eeo(15)

This field will give the stability limit and may be denoted as Hfi'

Hey

In what follows we shall determine H

can only be calculated if FP(B,T) is known.

for a dependency of FP which is

fi
found to be a good empirical approximation in many cases.(29)
FP = o ° B'EB 000(16)
(o}
AI-67-83
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and

P _ dx __B
oT oT B + Bo -e(17)
where
oB aT
Using (6) and (2) in (16), one finds the differential equation
o 1 3B _
With the boundary condition for x = 0, B = H the solution becomes
2 2 _
(H + Bo) - (B + Bo) = Bmox ees(19)
or
2 3
[(1+5)2 - o] * -5, =B e (297)

Substituting (17) - (19) into (14), differentiating and using the notation

13 - 2
s=73Syand R= (B +H) /Lmx, one obtains

(R- 2x) 8= 38- 38 =0 .. (20)

Substituting R - 2x = 26° and 8 = v/E , this reduces to the form

82\)
-_2' - 2SV = O 000(21.)
o8
which has the solution
v =C; cosh.,/ 25 § +C, sinh J 25 E .o (22)
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or resubstituting
] ")
8 ( 2 ) | l S(2x R) C sin ./ S(2x ~ R) eeo(22')

The first and second boundary conditions (15) give the following Equations
(23) and (24); and (22') inserted into the original Equation (14) gives

Equation (25). We use the notation v =./~S/Lmr and keep in mind that
4(R - 2xo) = Bﬁ /8mx.

= Cj cos By +C, sin By oo (23)

0 = ¢, cos (B0 +H)vy + C, sin (Bo + H) v oo (24)

0 = C, sin By - C, cos B,Y v0e(25)

These are three equations for the unknowns Cl’ 02 and H. Since we are
only interested in H, we write Equation (24) as

= (cos Hy)(Cl cos By + C, sin Boy) - (sin H\()(Cl sin By - C, cos Boy)

eeo(241)
After substitution of Equation (23) and (25), there remains

B D
0

cos Hy = O eee(26)
N

and the first solution of (26) gives after replacing y = ’- g_; /chmor

n &ﬂw
Hey =3 g—; ... (27)
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We may insert the most common temperature dependence of flux pinning

2
FP(T) = FP(O) [1 - (T/Tc)zj 000(28)

where Tc is the critical temperature. Equation (28) is a fair approximation in

many measured cases.(h) It is also plausible if one recalls that pinning is

expressed by the local gradient of variations in mean free energy and the pinning

sites are locally fixed. Since the difference in Gibbs free energy between
normal and superconductive state, being proportional to the square of the
critical field, has the temperature dependence of Equation (28) it is likely
that the variations also follow this dependence.*

With Equations (28) and (17) one obtains

%% = o(T) & T/(T02 - T2) ee+(29)

Using (29) in (27) one gets

Hey =I'2- /nc(Tcz - 13)/1 .es(30)

This equation is remarkable as 1t contains only the specific heat and the
critical temperature and neither the pinning strength parameter o nor the rate
of change of the external field dH/dt.

Subject to the assumptions of isothermal conditions (dH/dt not too large),
semi-infinite half spéce (good approximation as long as the shielding layer
does not reach the center of the specimen), and ordinary field and temperature
dependence of flux pinning, the stability limit is expressed by Equation (30).

Formulas similar to (27) and (30) have been presented earlier.(31:32)
Without allowing for the influence of 7 in Equation (3), they were, however,

erroneously attributed to Hfj'

*This is often not the case if the variations are caused by alloy phases or
inclusions which represent superconductors different froT t?e matrix, such as
in the Pb-Sn and Pb-Sn-In alloys reported by Livingston. 25
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D. LIMITED INSTABILITY

Once the stability limit as determined by Equation (14) is exceeded then
the original equilibrium equation (3) has to be considered in order to study
the process initiated by a disturbance. The time derivative of (3) gives an
equation of motion for the flux structure

ot ot

3t + v 3t eeo(31)

This equation has to be valid for all x and t. 1In addition, the following

equation for the conservation of the flux, which enters through the surface,
must be fulfilled

B
B*v = J 3t dx ...(32)
B=0

which gives

3B _3Bv _ v, . 2B
- Bax Vax 000(33)

in which the sign is negative because x(B) < x (B = 0).
Now each of the two terms on the left in (31) have to be worked out.
Making use of (2), (33), one gets

bFL N

av oB
3t im [B 30t (

ax * é; "'(310')

This equation can be simplified by making some approximations. As long as
I v (xb) dt << x_ one can neglect ov/dx (see Figure 4). The differential
quotient in the first term in (34) then becomes

2 () - 22
at \3 ax2
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because

AB

— =28
S (% t o) === (x - vat, t)

with this approximation (34) becomes

JF 2,
L_ v oB . 9
3t ““E?!:(& +B axzj e (341)

If f vdt is comparable to X, s We can make the following approximation (see
Figure 16).

1. f v (x =0) dt = %’ [v (xb) dt and therefore v(x) =4 v (xb)

x g_\5=v(xo)= v
[; + ;:] » and ax > x, X %

[o]

and

2. %g = P(x) %— where P is a proportionality constant. Then
o

@)-2(pn-_m. % _» % »
X

3 dt " x| T (xo + x)

[o}

o_
ot
o

Now (3L4) becomes

o

]

-%[(g—:-i)z-f.Ba_.B. —-_L-' ...(BAII)

+
ox x, tx.

The difference between (34), (34'), and (34'') is usually insignificant because
(aB/ax)2 is very large.

For the pinning force term in (31) one gets

EEE = EiE . QI + EEE . QE (35)
ot oT 3 dB ot ter
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The temperature is again given by a solution of the heat equation (12). Instead
of (11), we write

oT . 1, [2g '
i dt = f S f X dt .es(36)

Where f = f(x,t,dq/dt) is a parameter measuring the steadiness of the tempera-

ture distribution according to Equation (12) [f (adiabatic) =1, f (steady
state) = 0] See also Figure 17.

If we neglect the change in shielding current, we get [cf. Equation (10)]

=jVvVB=+=vB.= .o+ (37)

with the use of (33), (35) then becomes

oF oF oF
ot oT th axz c oB ox ox eee(38)
If we make use of the notation (36)
oF oF oF
Fp__Fp. .1 Fp o ndv, . B
3t 5t cfevBrtsy B *tv) ---(38")

We can now write the original equation (31), replacing T with c.B, as follows,

L
for small v
- 2 2 oF oF
v [(2B 3°B P_f 3B P, .3B_ v _ 2 2B
‘aﬂ_(ax +Bax2]+aT mCox BT Vo °n<Bat V'3
ees(39)
Which has the form
v _ 2
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where

1 iliz,g@_ﬂ@f.@_.l.(%z_z.F ?f_lz]
& BeglPB " 3x T hm 27 hm \d c " P AT ces(41)
and
= 1,098
bl B ax °
For larger v, Fquation (40) must be written, replacing a; and b, with
ol (S +§§\__B§§__3___.;_@§>2_£.F . Fp o
2 BB Gy, Tax Thmaxxdx, Tk s c"Fp'am
eeo(41)
_ 1.2, _1
by T B Tx+x
)
Equation (40) is solved by
a — -a,t -1
v = -b—i LCB i +1] 000(1&2)
i
Where C is given by the initial speed v,
!
c+1 = - eee(L43)
io

C being a large number, the addition of 1 can usually be neglected. For small
t (42) can therefore be written

t
v = vc'ea':L eoo(lidy)

(44) applies as long as J‘ vdt <X , i.e., in almost the whole limited
instability range.
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Note that for v, =0, the solution of (40) is v =0 as is seen in (44).
This is expected since vy = 0 implies no disturbance and the system was

originally in equilibrium.

It is further seen from Equation (44) that v decreases for a, <Oand v=
v, = constant for a, = 0, i.e., a disturbance will stop by itself and the
equilibrium is stable, a; = 0 giving the limit of stability. Indeed Equation
(14) which was given as the stability limit in the previous section will give
the same result if the time derivative is formed, using the simplifications
introduced after Fquation (34) and keeping in mind that d3p/dt = 3B/dt and f = 1.

It has been mentioned above that a limited instability is characterized by
a period of acceleration, followed by deceleration. The'time interval following
a disturbance in which the maximum speed is reached may be called tm. By
comparison with Equation (40), v is a maximum when

a.i (tm) = - bi v ooo(lp5)

If a; and b, were constant, this, according to (42), has only a solution for
tm ~ ®  thus the maximum speed would become

01 ®
Sl

eeo(L6)

However, a; is a function of x and also of f which is itself dependent on x and
t.

An exact treatment would require that Equation (31) be solved simultaneously
for all x an& t, inserting the heat equation correctly. This would lead to a
differential equation for the shape of the disturbance similar to (14), only.
more complicated. The solution would give the true v (x,t) describing the
complete process of a limited instability. Needless to say, this would be an
enormously difficult task, quite outside the scope of the present study and, in

the absence of precise experimental data, unwarranted.

Instead, having already, by assuming dv/dx = o, ignored the dependence of
v on x, we shall continue with the adoption of a great simplification concerning
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the heat equation. The results of the subsequent discussions and calculations
will therefore be more of a qualitative nature. However, the recipes for
estimating the maximum speed during a limited instability and the field at the
beginning of runaway instabilities should amply justify the procedure.

After this short apology, we can now show generally, by considering f, that
the quantity a4 starts decreasing after a very short time, passes through zero
(shortly after tm) and becomes negative. The connection between f and a, is
seen from Equations (41) and (41') which, however, are correct only for very
short times or f = 1. At the beginning, f is unity in the whole shielding layer

except at the boundary where f is kept close to zero by the cooling of the
‘liquid helium through the surface and by radiation into the bulk at Xy With
increasing time, f will decrease gradually throughout the layer because of heat
conduction to the boundaries, Tigure 17 gives an illustration of f for the
case of dg/dt = constant and t > 0, 0 < x < X, with the reduced time variable
h is the thermal diffusivity and d (= xo), the
thickness of the layer. In this figure, only the values at the center have
been calculated, assuming that both surfaces of the plane slab are kept at zero
temperature. The remainder has been filled in by approximating, for small time
values, by the unsteady state solution and, for large t, by the steady state
solution of the heat equation. The left hand boundary is assumed to stay at
zero temperature and at the right-hand boundary there is radiation into the
same medium at zero temperature. This would make f infinite at the boundary
itself, which is the reason for leaving the vicinity of X, blank.

2
tath/d as a parameter, where o

We learn from Figure 17 that for tath/d2 < 0,02 the assumption £ =1 is a
fair approximation and that for longer times f reduces rapidly.

If one can neglect the change in X, during the whole limited instability
process [see Equation (34')], one writes t_ from Equation (45) as

x 2

=2,
th oy 8 e oo (47)

Seeing that f is small at the surface and near X, and without knowing the
exact shape of the disturbance, we can say that the change in the shielding
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Figure 17. Temperature Distribution Function f vs x in the Penetration
Layer, for Increasing Time Parameters 8 = ayy t/d%. f =T ¢/, [ da/at at,
where AT =T - Tg .rocee Formulae for AT are found in Reference 33. In
the present case f for x = d/2 and dq/dt = constant, has been camputed as
£f=1/m 12 S(60 « [1 ~i/m]), m being a large number. The function S(8)
is tabula;.oed in Reference 3i.
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layer, i.e., the change in B and dB/dx is largest near the center. One might
also say that the acceleration force is largest at the center and is spread out
over the whole of the layer because of the elastic rigidity of the flux
structure. Considering all this, one may make a plausible choice of g = 0.015,
which is the value for which f at the center starts to diminish. With this,
Equation (44) can be written

- __H __,di 2
vma.x - hﬂFPiHi dt pr (O°015 ai xO /ath) ...(h8)

In this formula, vy has been replaced by Vipr from Equation (4) using
Equations (2) and (6).

E. RUNAWAY INSTABILITY OR FLUX JUMP

We have seen that, once the stability limit is exceeded, a disturbance will
cause the flux lines to be accelerated by the Lorentz forces because of the
weakening of the flux pinning. The velocity, starting from the drift velocity,
will eventually reach a maximum value. In the case of a limited instability,
this value is comparatively low, allowing a thermal recovery of the bulk of the
shielding layer via heat conduction. Thus, the pinning forces recuperate and a
deceleration of the flux structure sets in which stops the instability again.
Thermal recovery starts when the time parameter @y t/d2 reaches a certain
critical value, which from a study of Figure 17 we have guessed to be 0.0l5.

The situation may change when the thickness, d, of the shielding layer

d=x + [ vit .o (49)

increases noticeably during the acceleration period. Should d grow faster than
«/7; s we obtain a case where the thermal time parameter decreases with increas-
ing time, t. This means that the heat conduction is too slow and the process
becames, or remains, adiabatic; i.e., the thermal function f = 1 [see Equation
(36) and Figure 17].

In this kind of process, the acceleration continues until a final runaway

speed is reached. Naturally in due course the movement temminates owing to the
boundaries of the superconductor.
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This process is a flux jump and it occurs when the following criterion
holds

2
LR t/d° < g, ...(50)

In other words: the condition for the development of a runaway instability
is that the thermal time parameter, which is zero to begin with, will not exceed
a certain critical value, 8y because of the expansion of the thickness of the
shielding layer.

In order to make a quantitative estimate, we shall adopt the same recipe as
in the previous section. We assume that Figure 17 is a reasonable approximation
for the function f, although as d is not constant the agreement would be
expected to be somewhat poorer. This would again give a choice of 8, = 0.015.

We arrive at the threshold value for a runaway instability by putting this
critical value into Equation (50) and assuming the equality sign. Since f =1
is again valid, we can use Equations (40)-(44) in determining v which gives the
value for d according to Equation (49).

We still have to decide what limits the integral in Equation (49) should
take. The obvious choice of taking Vyr 38 the initial speed is not good if we
realize that Figure 17 is only right for constant dg/dt which in this case means
constant v. Instead of being constant, v changes by several orders of magnitude
befofe the integral becomes comparable to X Therefore, the insertion of the
initial speed Voay from Equation (48) is suggested. Thus the thermal time
parameter is counted from the moment when the heat production has reached this
almost constant, higher level of the limited instability.

On the basis of these considerations, the formal result is reached as

follows. Taking v from the expression (42), the constant C assumes the value

¢ =- (g:—i——mﬂ) ea(51)

where v is given in (48). With
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a —ait

I vit = - Ly - EL-log (L+ce ) ese(52)
by~ by

)

The criterion Equation (50) becomes

1 % 3 -2 1+¢ 4 / %th
- i t e
S T (5% )" 0.015 --(53)

i i

The condition that the left-hand side shall be a minimumn will determine the

unknowns t and C. The constant C contains the value Hfj’ the threshold field
for runaway instability.

In a practical evaluation, one may get the left~hand side of (53) vs. time
directly from Equation (40) by means of an analog computer.

F. CONCLUSION

In order to appreciate the applicability of the formulas presented in the
previous chapters, it is of importance to state once more clearly the assump-
tions made and discuss the effect of deviations from them. In subsequent
sections, the influence of the main variables, such as dH/dt, Uyps FP and
aFP/aT, will be outlined and finally, a comparison in a general way with

experimental findings should be of interest.

Magnetic instabilities can only occur when a superconductor is not in thermo-
dynamic equilibrium, i.e., irreversible. Terms like '"perfect'" or "ideal' allude
to a high degree of reversibility,(BS) an "ideal" superconductor cannot sustain
any macroscopic magnetic gradients in the mixed state.(36 -38) The maximum of
the deviation from equilibrium which an imperfect superconductor is capable of
can be characterized by a "critical state." This, for the purpose of the
present investigation, is sufficiently described by a bulk critical current
density J which is normally a function of the local induction B and temperature
Te In general and recently the subject of various studies,(39) there is also
a surface critical current density Jog ™ in addition to the equilibrium surface
current responsible for the ideal diamagnetic properties of the superconductor,
and unlike this one it can have positive or negative sign. Maxwell's equations
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allow an alternative description of the critical state in terms of a magnetic
gradient 3B/dx = kg and of a step at the surface MH_ = A4nJ_ _. A third
equivalent description uses pinning forces which are connected to the previous

two views by being the reaction to the Lorentz force, = Jc x B; in this more

F
P (40)

microscopic picture the surface current takes the role of a surface barrier.
While in many magnetically unstable superconductors these surface currents
are not negligible, (AHs is of the order of 100 gauss in NbZr and NbTi(hl)),
their influence on the instability problem is small if the surface is well cooled
as in our conditions. Naturally the boundary field which the bulk flux structure
sees should be taken as H - AHS rather than the external field H alone. Since
instabilities related to the surface represent sudden changes of AHS, they

become a source of disturbances similar in effect to an unsteady dH/dt.

We have assumed isothermal conditions; this is largely a mathematical
convenience. The same physical ideas apply when dH/dt is too large for the
isothermal approximation, but simplifications like Equations (4) and (16) are
no longer allowed and the calculation may become prohibitively complicated. For
large values of dH/dt one approaches fully adiabatic conditions. Then a very
simple criterion will establish an upper limit for the flux jumping field,(hz)
however, the presently outlined mechanism may, and usually does, still cause
instabilities at a slightly lower field.

An important simplification justified by the isothermal assumption is the
heat equation (12)., 1In this formm it is only valid when the thermal diffusivity
is a constant. In reality o,, = K/c is a function of T because both ¢ and K

th
vary differently with temperature. The correct heat equation

¢ & = v(kvr) ... (54)

becomes

-al-Tfl=gv2 () ... (55)

3
2 ¢ 5t

ife= cT3 and K = ¢ T2 which are fairly close to the actual functions in the

superconductor.
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In adopting Equation (11), we have also assumed that the magnetic diffus-
ivity is larger than the thermal diffusivity. In reality the magnetic disturb-

~--ence, B in Fquation (10), is itself the result of a diffusion process and should

likewise bb'*ﬁe qolution of an equation

B -q B” ... (56)

el.mag,
This is important because ael.mag. is proportional(ze) to dH/dt; consequently,
for small dH/dt, the disturbance propagates itself so slowly that Equation (11)
is never valid, the heat being conducted away as it is produced. Equation (56)
was used to determine the stability limit in dependence of dH/dt by means of an
analog computer, but the results depend on the type of magnetic disturbance

being used as a bourdary condition and, moreover, o far from being a

el.mag.
constant, renders Equation (56) a very poor approximation for similar reasons as

given above in discussing the heat equation.

In the present treatment dH/dt enters through vy, of Equation (4) into
Equation (48) to influence the limited instability and H 3 because of (10) the
stability limit is independent of dH/dt, thus for very small dH/dt the results
are questionable.

In connection with the drift velocity, it should be pointed out that for
very slow movements Vip represents an average speed which may be composed of
short quick movements of individual vortices while the others are stationary.
Spacing of pinning sites may be of the order of 10-5 cm which is the same as
the spacing of fluxoids at B = 2000 G. With the idea of spatially discreet
pinning centers and the elasticity of the flux structure(LB) (Maxwell tensor),
one might assume that a small section of a flux line having cleared a pinning
site moves a fraction of this distance, say 107 em. 1f Vip < 107 cm/sec
(for 3 = 10° A/cm , di/dt < 10 Oe/sec) then this process occurs only once every
second. This is also a reason why for very low Vy4p the present treatment is

poor and why Equation (56) is no big improvement.

This, lastly, raises the question of the validity of a constant viscosity 7
in Equation (3). The nonlinearity of Equation (3) has been experimentally

invastigated(hh) and it was found that for FL < FP the drift velocity reaches
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finite values. 1In the light of the above model and in order to keep the
formalism of Equation (3) intact one would have to add to the Lorentz force a
force, Fdef’ which is due to the deformation of the flux structure. Fdef
expresses the excess of the steepest local gradient over the average gradient

dB/dx connected [Equation (2)] with F Equation (3) then becomes

L.
Fp =Fp=Fy o+ v ee.(57)

Fdef’ according to the results of Reference L4, can be expressed as a function
of FL/FP and would take values as illustrated in Figure 18. v (which can only

be positive) is different from zero when

... (58)

5 () >0 (59

SBE(F -LF '>>° ++-(60)

Consequently, the criterion for stability is unaffected by this more refined
description. =~ Once the stability limit is exceeded one has to expect a lower
Voax speed during a limited instability. This in turn leads to a higher runaway
field Hfj' At present not enough is known about Fdef
size (~ 20%) compares with the scattering of experimental flux jumping data,

the mathematical complications are a strong bias against its inclusion.

and since its relative

The geometric assumption of a semi infinite plane superconductor is not
very restrictive because in most cases the shielding layer thickness d is small
compared to the dimensions of the superconductor. Conversion of the calculation
into cylindrical coordinates shows that for d < 80% of radius r of a solid
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Figure 18. Qualitative Illustration of F d ef/FP vs FL/FP on the
Basis of Reference LL
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cylinder, the change is very small., If the shielding layer grows further
towards the center then the danger for instabilities subsides as outlined in
the second chapter, Figure lic,

Cooling in zero field has been taken as an initial condition with regard to
the magnetic history of a specimen. Normally after a flux jump, B inside is
uniform and equal to H (= Hfj) outside,(l5) in which case subsequent instabil-
ities can be worked out by applying the same formalism unchanged except for the
initial field H which becomes Hfj instead of zero. Neither does it matter
whether, after a flux jump, the field is raised or lowered; if B = O is crossed,
some small complications, mentioned in detall later, may arise. In general and
for more complicated magnetic histories, it is sufficient to know the (macro-
scopic) distribution of B throughout the shielding layer in order to easily
adapt the given formulas.

In this context the case of the external field being not parallel to the
surface should be mentioned. Again if the internal distribution of B is known
the present treatment should, in principle, be adaptable. The difficulty in
predicting B in such cases seems at present at least as big an obstacle as the
anticipated mathematical complexity. This has been discovered recently for the

simple geometry of a long cylinder in a perpendicular field.(h5’h6)

For the brief discussion of the influence of variables on the results, we
shall stay within the assumptions originally adopted and we include external
variables such as H, dH/dt and T as well as material constants such as F

BFP/aT, Fyps Ce

It may be repeated here that in regions (with regard to T and H) where
BFP/BT > 0 the stability limit (7) or (58) is never reached and the supercon-
ductor is inherently stable. A small argument has been presented which makes
plausible why many defects have a pinning strength which decreases with
increasing temperature like (1 - [T/T ] ) but there are many pinning mechanisms
possible and there have been reports of aFP/BT > 0, (6,30,47)

P’

The variation of the stability limit as c¢? is seen directly from (27) and
(30). Many studies(lh’LB’h9) have suggested, at least qualitatively, similar
formulas containing the c% dependence, Since Hfj is more or less proportional
to Hfi the influence of ¢ is reflected in the flux jumping field. Experiments
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with porous NbBSn give a good illustration.(b9-5l) If the pores are filled

with liquid helium, c being the specific heat per unit volume will have a
contribution from the heat of vaporization of the liquid, which for completely

isothermal conditions can increase ¢ by a factor of 100, increasing Hfj tenfold.

The effect of the actual size of FP is weak, having no influence on the
stability 1imit [Equation (30)]. Weak pinners, however, often do not fulfill
the geometric assumption of infinite thickness and appear therefore more stable.
Fp enters Equation (48) and thus influences Hfj in BEquations (51)-(53). H
changes in the same sense as FP' (See specimen L in Reference 42.) The
influence of dH/dt is very similar but inverse to that of Fp, as seen in (48).
For large dH/dt, Hfj will reach a constant value considerably above H
mall di/dt, Hy, increases logarithmically. (32) |

£J

£i° for

The thermal diffusivity has also a comparatively weak influence, changing
Hfj in the same sense. The temperature dependence of %
tends to counteract the (1 - [T/Tc]2)2 dependence of Fp, resulting in a weak

temperature dependence of Hfj in spite of the variation of Hfi'(53)

Finally, we try to find experimental illustration and confirmation of the
presented arguments and calculations. Although magnetic instabilities have
frequently been observed, they are usually not in the focal point of an investi-
gation and therefore only incidentally reported. Often the geometries are
remote from the plane slab, or the material of an inhomogeneous nature, the

results therefore only qualitatively comparable.

being close to 7%

The present study has partly been stimulated by an experimental investiga-
tion of flux jumping in solid NbZr cylinders. Some of the results have been
reported(hz) and a more detailed description including measurements of A
BFP/BT, and incorporéting calculations as outlined here will be published
elsewhere. The agreement of these results with the present theory is reasonable;

naturally, the choice of the critical constants 8 and g, has been influenced by
these experimental results.

Perhaps insufficiently recognized so far is the fact that runaway instabil-
ities are preceded by limited instabilities. The latter often go unnoticed in
experiments which measure flux jumping activities because the effect in terms of

change in magnetization or amount of flux involved is very much smaller.
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However, experiments by Wischmeyer(5h)

clearly show small rushes of flux,
of 100 flux quanta or more, which increase with dH/dt and are observed under
conditions which immediately precede the occurrence of flux jumps and above the
stability limit. Another interesting observation is that these limited insta-

bilities are, as expected, also localized with regard to the specimen surface.(ss)

Further observations of limited instability have been reported as "flux
Jumps' of between 5 x lOb and 2 x lO7 quanta each where a total flux jump would
require at least lO8 quanta.(sé)

The magnetocaloric effect reported by Zebouni,
et al.,(57) can almost certainly be attributed to limited flux jumping.

It must be pointed out here that a series of limited instabilities can lead
to a sufficient relaxation of the Lorentz force, so that real runaway instabil-

ities never occur.

Since the solution of Equation (40) gives a final velocity v, [see Equation
(46)] and since there are various measurements of such velocities,(h5’58’59) we
ought to focus our attention quickly on this point. If during a flux instability
a final velocity is reached, it will be given by an integral of Equation (31),

4 mor bi is constant. Such a
solution would be expected to give smaller speeds than a solution of the

similar to Equation (46). Of course, neither a

diffusion equation

oH
g—~ = Lno 3t ..0(61)

2% _
2
X
with o being the normal electrical conductivity. However, in the adiabatic flux
Jumping limit equation (61) could apply. We can therefore say that for flux
Jumps occurring below HA of Reference 42 the final speed will be lower than a

solution of (61) and depend on Hf . If Hfj 2 H, (for small dH/dt, higher
temperatures, etc.) then Equation (61) will apply.

The question of what happens after the runaway speed has been reached has
not been treated here. Ve mentioned earlier that most observed flux jumps end
when flux has reached the center of the specimen; but even in the semi infinite
slab the movement will come to a rest since the runaway speed is not infinite

and thermal recovery does take place behind the moving flux front. Thus the
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recovering flux pinning will interrupt the supply of flux. An excellent
experimental study by Wertheimer and Gilchrist(éo) shows this in the case of
very short cylinders.

It has been noticed in certain experiments that, immediately after a flux
jump, no or very little flux is admitted. This indicates the influence of the

surface critical current and is especially noticeable when AH_, is comparable to

dB/dx * r, which is normally the case for low » material likesNb(él) or for
weak pinners like Pb-Bi alloys. In this context another influence has recently
come to notice; it was reported(éz) that what must be surface originating
instabilities occur under otherwise equal stability conditions only when flux
is leaving the sample but ?Zg)when entering. In this particular case the

sample and set free when fluxoids leave, will create a change of the surface

entropy of the flux lines, needed to create the fluxoids when entering the
- #*

temperature of ~ 1 x 10 3 °k. This temperature change being negative when

fluxoids enter the specimen stabilizes AHS , being positive when fluxoids leave,

it adds to the Joule heating, thus increasing the instability conditions.

It has been suggested that the annihilation of flux lines in the region
where B = O is a crucial influence in causing flux jumps.(12’63’6h) But in many
cases such an influence can hardly be noticed.(51’53) The annihilation of flux
lines which will release additional energy will doubtlessly complicate the
picture in the region B = O along with the possibility of a Meissner state (for
B < Hcl) and consequently an intermediate state between the regions of opposing
flux; but fortunately in most cases the influence is negligible.

*Note that in Reference 62 there is an error concerning the diameter of the
specimen which should be 34 mil (= 0.86 mm) and not 34 mm as printed (private
communication by J. Silcox). To arrive at the surface temperature change, we
used heat transfer values extrapolated from Reference 22.
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